Interestingness measures for association rules: Combination between lattice and hash tables
نویسندگان
چکیده
There are many methods which have been developed for improving the time of mining frequent itemsets. However, the time for generating association rules were not put in deep research. In reality, if a database contains many frequent itemsets (from thousands up to millions), the time for generating association rules is more longer than the time for mining frequent itemsets. In this paper, we present a combination between lattice and hash tables for mining association rules with different interestingness measures. Our method includes two phases: (1) building frequent itemsets lattice and (2) generating interestingness association rules by combining between lattice and hash tables. To compute the measure value of a rule fast, we use the lattice to get the support of the left hand side and use hash tables to get the support of the right hand side. Experimental results show that the mining time of our method is more effective than the method that of directly mining from frequent itemsets uses hash tables only. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملA New Probabilistic Measure of Interestingness for Association Rules, Based on the Likelihood of the Link
The interestingness measures for pattern associations proposed in the data mining literature depend only on the observation of relative frequencies obtained from 2×2 contingency tables. They can be called “absolute measures”. The underlying scale of such a measure makes statistical decisions difficult. In this paper we present the foundations and the construction of a probabilistic interestingn...
متن کاملInterestingness Measures for Rare Association Rules and Periodic-Frequent Patterns
Data mining is the process of discovering significant and potentially useful knowledge in the form of patterns from the data. As a result, the notion of interestingness is very important for extracting useful knowledge patterns. Numerous interestingness measures have been discussed in the literature to assess the interestingness of a knowledge pattern. In this thesis, we focus on selecting a ri...
متن کاملSelecting a Right Interestingness Measure for Rare Association Rules
In the literature, the properties of several interestingness measures have been analyzed and a framework has been proposed for selecting a right interestingness measure for extracting association rules. As rare association rules contain useful knowledge, researchers are making efforts to investigate efficient approaches to extract the same. In this paper, we make an effort to analyze the proper...
متن کاملAssociation Rules: An Overview
Association rules present one of the most versatile techniques for the analysis of binary data, with applications in areas as diverse as retail, bioinformatics, and sociology. In this chapter, the origin of association rules is discussed along with the functions by which association rules are traditionally characterised. Following the formal definition of an association rule, these functions – ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011